
met at CERN (dressed as Xmas tree...)
string models
first geometric mirror pair



The discovery of 
Escher-symmetries

in Nature ?



Infinite  Symmetry
and

Hyperbolic Tiling

Fricke&Klein (1890), Coxeter (1957), Escher (1960)

Escher almost as obsessed with symmetry as we 
are in physics...

Initially wall-paper symmetries, but after meeting 
Coxeter in 1954 he introduced hyperbolic (modular) 
symmetries to the general public.

Absent from experimental physics.... until now!





PSL(2,Z)    

Cryptic blobs contain the group 
theoretical DNA of diagram...

NO MATH, BUT HERE FOLLOWS A 
VISUAL PRIMER SO WE CAN 
RECOGNIZE THE SYMMETRIES IN 
THE DATADATADATA
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3 types of fixed points!

THIS IS OUR PROPOSAL 
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Nature > “Flatland”



The integer QHE

Klaus von Klitzing (1985)
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The fractional QHE

Dan Tsui et al.(1998) 
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3 TYPES OF RG FIXED 
POINTS

CONSIDER EACH IN TURN:



The plateaux:  
stable RG fixed points

Bob Laughlin (1998) 



How robust?
How universal?

Soon SI will redefine kg 
using h and Amp using e

=>  high precision QH exp
have enormous impact on  
technology!



Universality:          |RH(GaAs/AlGaAs) - RH(Graph)| < 10^(-10)  

         Janssen et al.    September 16 (2011)  Teddinton (NPL)



Universality:                room temperature QHE in graphene

Novoselov et al.  (2007)   Manchester



The quantum critical points:  
semi-stable RG fixed points



1.3 1.4 1.5 1.6

1
4

1
3

B �T�

Ρ H
�h�e2 �

T 4

1.3 1.4 1.5 1.6

1
4

1
3

B �T�

Ρ H
�h�e2 �

T 3

1.3 1.4 1.5 1.6

1
4

1
3

B �T�

Ρ H
�h�e2 �

T 2

1.3 1.4 1.5 1.6

1
4

1
3

B �T�

Ρ H
�h�e2 �

T 1

T 2

T 3

T 4

Tsui et al. (2009)

SCALE PARAMETER = 
TEMPERATURE

FLOWS EVERYWHERE 
EXCEPT AT FIXED POINTS,
SO CRITICAL POINTS ARE 
TEMP.INDEPENDENT!???
YES! look:

0.282(2)
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GH = “DNA” => Phase portait.      RG flow???

Hall conductivity (xy)
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T(z) = z + 1
S(z) = - 1/z

STTS(z) = z/(1-z)
WANT MORE - A LOT 
MORE:

EXACT SHAPE OF ALL RG 
FLOW LINES!
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rameter Λ changes:

β1 =
dσH

dt
, β2 =

dσD

dt
, t = ln(Λ/Λ0).

Very little can be said in general about the proper-
ties of RG flows, except that the topology of the flow is
determined by the fixed points. The flow ends at infra-
red (IR) stable fixed points (⊕), which in the quantum
Hall case are the plateaux observed at rational values
σ⊕ = σH ∈ Q of the complexified conductivity. This set
P ⊂ Q of IR fixed points are therefore the only real values
that should be included in the physical parameter space,
H⊕ = H ∪ P. Furthermore, physical (contravariant) β-
functions have simple zeros at quantum critical points
σ⊗ ∈ H⊕ for the localization-delocalization transition.
Every member of this set E ⊂ H⊕ of critical points must
be a proper saddle point of the flow, i.e., there should be
both attractive and repulsive directions.

In Ref. [3] it was proposed that a lot more can be said
about RG flows in the QHE. Careful examination of the
fixed point structure (i.e., the set P∪E of stable and semi-
stable fixed points) probed by scaling experiments reveal
that there appear to be emergent symmetry groups Γ
acting on the parameter space by fractional linear trans-
formations γ(σ) = (aσ + b)/(cσ + d). The group ele-
ments γ ∈ Γ are given by integers a, b, c and d satisfying
det γ = det(a, b; c, d) = ad− bc = 1, and some additional
constraint that distinguishes the different sub-groups of
the full modular group PSL(2, Z). These so-called mod-

ular symmetries can be used to constrain the RG flow,
rendering them essentially unique in maximally symmet-
ric cases.

The first and most important observation is that any
Γ-symmetry partitions the parameter space into univer-
sality classes, with each phase “attached” to a unique
(plateau) fixed point on the real line. This follows from
the mathematical fact that compactifying the topology of
the space on which a modular group acts gives precisely
the physical parameter space H⊕. Hall quantization is

therefore a consequence of modular symmetry. This is
the first example of a remarkable confluence of quantum
Hall physics and modular mathematics. The extreme
precision (parts per billion) observed for this quantiza-
tion means that the emergent symmetry, which is always
approximate, is very accurate at the low temperatures
used in these experiments. Other consequences of mod-
ular symmetries should therefore also be very accurate
and provide rigid tests of the modular model.

A Γ-symmetry is not like a local gauge symmetry, be-
lieved to be the only exact symmetry in Nature, which
identifies gauge equivalent field configurations. Rather,
it collects or classifies effective field theories into families
(universality classes) that are related, but not identified,
under global modular transformations. If the transfor-
mation swaps weak and strong couplings they are called

duality transformations. Dualities give access to non-
perturbative data that are usually inaccessible by other
means. For example, the fixed point set of each Γ cannot
be manipulated: all the plateaux and quantum critical
points following from Γ must be included. The quan-
tum critical points are located on the phase boundaries,
and as soon as one is pinned down the location of all
the others is fixed by the symmetry. In maximally sym-
metric cases, which includes the spin polarized system,
there is no freedom at all: the exact location of all fixed
points follow directly from the symmetry. Only recently
have scaling experiments probed sufficiently low temper-
atures for this idea to be properly tested, even in the
simplest case of the fully spin polarized QHE. The emer-
gent modular symmetry ΓH identified two decades ago
[3, 4, 8] appears to account for most, if not all, universal
data in this system. One example is the quantum criti-
cal point in the delocalization transition between the the
third and fourth Hall plateaux. The location predicted
by modular symmetry in 1992 is within a few per mille
of the experimental result obtained recently by Tsui et
al. [21].

Since the actions of the renormalization group and the
modular group must be consistent, Γ-symmetry forces
the RG flow into a straight-jacket [10]. Not only are the
RG fixed points, including the quantum critical (saddle)
points, mapped into each other, so are the β-functions.
This means that the flow rates everywhere in one phase
are mapped into the flow rates in any other phase, and
the flows observed experimentally in the spin-polarized
QHE appear to satisfy this prediction as well [8]. In par-
ticular, it follows that the critical exponents λ±, which
are the (inverse) flow rates in the principal directions near
a critical point, are “super-universal”: they are always
the same, independent of which quantum phase transi-
tion is considered [3]. This is consistent with measure-
ments of the relevant exponent (λ+ > 0) for different
Hall transitions, as well as numerical “experiments”. The
irrelevant exponent (λ− < 0) appears to be all but impos-
sible to measure, but numerical work reveals the striking
possibility that λ− = −λ+.

This is evidence of an analytic structure that has
been used to identify the exact geometry of the RG
flow [6, 7, 10]. We can combine the two real β-functions
into one complex function βσ = β1 + iβ2, but this β-
function can not be holomorphic since holomorphic (com-
plex analytic) functions do not have proper saddles, as re-
quired by physics. This is seen by expanding a holomor-
phic function near a (simple) vanishing point z0. There
is only one real eigenvalue λ = λ+ = λ−, which cannot
vanish since z0 would then not be a simple zero. Conse-
quently, z0 can be a source (λ > 0) or a sink (λ < 0) for
the flow, but not a saddle point.

In another example of the convergence of quantum
Hall physics and modular mathematics, this is not an
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additional constraint, since holomorphic modular con-
travariant (physical) vector fields do not exist at all. This
follows from the observation that the βσ-function trans-
forms as a contravariant vector field when σ → σ� = γ(σ)
under a modular transformation γ ∈ Γ:

βσ�
=

�
dσ�

dσ

�
βσ = (cσ + d)−2βσ ,

where the modularity constraint ad − bc = 1 has been
used. A non-singular holomorphic function that trans-
forms like this is called a modular form of weight w = −2,
and the most basic fact of modular mathematics is that
no form with negative weight exists. In other words,
physics and mathematics are in agreement that such
functions should not exist.

The spectrum of holomorphic modular forms is very
sensitive to the choice of symmetry group Γ. If we want
the form to be covariant under the full modular group
PSL(2, Z), then the lowest possible weight is w = 4. For
the sub-groups found to be of relevance to the QHE the
lowest weight is w = 2. This admits the possibility that
the covariant βσ-function, which does have this weight:

βσ� =
�

dσ

dσ�

�
βσ = (cσ + d)+2βσ ,

can be both modular and holomorphic. There are two
independent arguments favoring this, one experimental
and one theoretical.

Observe first that a physical parameter space should be
an ordinary Riemannian manifold with metric G, which
in our context must also be Γ-symmetric, i.e., a real
modular form of weight (w,w) = (2, 2). The natural
geometry of H⊕ is hyperbolic and the canonical met-
ric is the Poincaré metric. This is the Kähler metric
with components GH = GH = ∂σ∂σK = 1/σ2

D
, where

K = ln(σD|f(σ)|2) is a Γ-invariant Kähler potential and
f is, up to a phase (“multiplier system”), a holomorphic
modular form of appropriate weight (w = 1/2). K is
a physically reasonable potential, in the sense described
in this section, if f is the Dedekind η-function, but we
do not need detailed knowledge of the metric here. Since
we are assuming that a non-singular effective field theory
exists for finite values of σ, this metric is non-singular at
critical points and therefore invertible, and we have:

βphys = βσ = Gσσβσ . (1)

For finite values of σ we can therefore quarantine non-
holomorphicity of the physical β-function to the metric.
So-called “holomorphic anomalies” may appear at sin-
gular values of σ, but they will not concern us here.
If βσ is holomorphic the pseudo-experimental fact that
λ− = −λ+ follows from eq. (1), no matter what non-
singular value the physical metric takes at the critical
points.

A second argument in favor of a holomorphic βσ follows
from our expectation that this vector field is a gradient
flow. This means that

βσ = −∂σΦ , (2)

where ∂σ = ∂/∂σ and the RG-potential Φ ∈ R is a kind of
“vacuum entropy” that counts the number of (effectively)
massless degrees of freedom at critical points.

The existence of these potentials has been proven
for two-dimensional unitary quantum field theories [30]
where they are known as “C-functions”. Quantum Hall
dynamics is essentially two-dimensional since the phase
space of incompressible quantum fluids is effectively two-
dimensional (the spatial coordinates are canonically con-
jugate, as in Onsager’s vortex dynamics). Furthermore,
a similar result is expected to hold in any dimension, so
we may reasonably expect that the theorem applies.

This so-called “C-theorem” guarantees that an RG po-
tential exists that smoothly interpolates between confor-
mal fixed points, which are critical points of the poten-
tial, and that the physical β-function is obtained from
the gradient vector field generated by this potential us-
ing a metric on parameter space that will not concern
us here. Suffice it say that it can be calculated directly
from the effective field theory, if this is known. Since
it is smooth and positive definite it does not affect the
topology of the RG flow, only the absolute values of the
flow rates. By construction this β-function is completely
normal: it vanishes at critical points (where the tangents
of the potential are flat), and the critical exponents are
given by the principal curvatures of the potential at these
saddle points.

While Zamolodchikov’s proof is quite explicit, compu-
tation of his RG potential requires access to various corre-
lations functions, i.e., essentially the full effective action.
Since this is not available for the QHE a more oblique ap-
proach is needed. This is provided by Friedan’s proof of
the C-theorem [31, 32], which uses only general properties
of spectral functions. This proof shows explicitly that the
C-function counts degrees of freedom, at least near the
critical points where it equals the central charge of the
conformal (scale-invariant) field theory. We recall some
elementary properties of the spectral form. In two di-
mensions symmetries of space-time reduces it to a single
scalar function, which by causality (unitarity) is positive
definite. This function measures the density of degrees of
freedom in the given theory, with poles at single-particle
states and cuts at the continuum, which sum to unity.
If the theory is changed so that a new set of low-energy
states become relevant, then this theory has a different
spectral function. We can imagine that these two theories
belong to a single, one-parameter family of effective ac-
tions by a suitable choice of basis (lagrangian parameters
or coupling constants), giving a family of spectral func-
tions ρa ∈ R (a ∈ R) that interpolates smoothly between
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The spectrum of holomorphic modular forms is very
sensitive to the choice of symmetry group Γ. If we want
the form to be covariant under the full modular group
PSL(2, Z), then the lowest possible weight is w = 4. For
the sub-groups found to be of relevance to the QHE the
lowest weight is w = 2. This admits the possibility that
the covariant βσ-function, which does have this weight:

βσ� =
�

dσ

dσ�

�
βσ = (cσ + d)+2βσ ,

can be both modular and holomorphic. There are two
independent arguments favoring this, one experimental
and one theoretical.

Observe first that a physical parameter space should be
an ordinary Riemannian manifold with metric G, which
in our context must also be Γ-symmetric, i.e., a real
modular form of weight (w,w) = (2, 2). The natural
geometry of H⊕ is hyperbolic and the canonical met-
ric is the Poincaré metric. This is the Kähler metric
with components GH = GH = ∂σ∂σK = 1/σ2

D
, where

K = ln(σD|f(σ)|2) is a Γ-invariant Kähler potential and
f is, up to a phase (“multiplier system”), a holomorphic
modular form of appropriate weight (w = 1/2). K is
a physically reasonable potential, in the sense described
in this section, if f is the Dedekind η-function, but we
do not need detailed knowledge of the metric here. Since
we are assuming that a non-singular effective field theory
exists for finite values of σ, this metric is non-singular at
critical points and therefore invertible, and we have:

βphys = βσ = Gσσβσ . (1)

For finite values of σ we can therefore quarantine non-
holomorphicity of the physical β-function to the metric.
So-called “holomorphic anomalies” may appear at sin-
gular values of σ, but they will not concern us here.
If βσ is holomorphic the pseudo-experimental fact that
λ− = −λ+ follows from eq. (1), no matter what non-
singular value the physical metric takes at the critical
points.

A second argument in favor of a holomorphic βσ follows
from our expectation that this vector field is a gradient
flow. This means that

βσ = −∂σΦ , (2)

where ∂σ = ∂/∂σ and the RG-potential Φ ∈ R is a kind of
“vacuum entropy” that counts the number of (effectively)
massless degrees of freedom at critical points.

The existence of these potentials has been proven
for two-dimensional unitary quantum field theories [30]
where they are known as “C-functions”. Quantum Hall
dynamics is essentially two-dimensional since the phase
space of incompressible quantum fluids is effectively two-
dimensional (the spatial coordinates are canonically con-
jugate, as in Onsager’s vortex dynamics). Furthermore,
a similar result is expected to hold in any dimension, so
we may reasonably expect that the theorem applies.

This so-called “C-theorem” guarantees that an RG po-
tential exists that smoothly interpolates between confor-
mal fixed points, which are critical points of the poten-
tial, and that the physical β-function is obtained from
the gradient vector field generated by this potential us-
ing a metric on parameter space that will not concern
us here. Suffice it say that it can be calculated directly
from the effective field theory, if this is known. Since
it is smooth and positive definite it does not affect the
topology of the RG flow, only the absolute values of the
flow rates. By construction this β-function is completely
normal: it vanishes at critical points (where the tangents
of the potential are flat), and the critical exponents are
given by the principal curvatures of the potential at these
saddle points.

While Zamolodchikov’s proof is quite explicit, compu-
tation of his RG potential requires access to various corre-
lations functions, i.e., essentially the full effective action.
Since this is not available for the QHE a more oblique ap-
proach is needed. This is provided by Friedan’s proof of
the C-theorem [31, 32], which uses only general properties
of spectral functions. This proof shows explicitly that the
C-function counts degrees of freedom, at least near the
critical points where it equals the central charge of the
conformal (scale-invariant) field theory. We recall some
elementary properties of the spectral form. In two di-
mensions symmetries of space-time reduces it to a single
scalar function, which by causality (unitarity) is positive
definite. This function measures the density of degrees of
freedom in the given theory, with poles at single-particle
states and cuts at the continuum, which sum to unity.
If the theory is changed so that a new set of low-energy
states become relevant, then this theory has a different
spectral function. We can imagine that these two theories
belong to a single, one-parameter family of effective ac-
tions by a suitable choice of basis (lagrangian parameters
or coupling constants), giving a family of spectral func-
tions ρa ∈ R (a ∈ R) that interpolates smoothly between
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nized by identifying the parities of the attractors on the

real line, i.e., the parities of the plateaux values ⊕ = p/q.
The modular group Γ(1) does not distinguish between the

parities of the fractions p/q ∈ Q, so all rational numbers

are equivalent under this symmetry. Γ(2), on the other

hand, respects the parities of both p and q, so it parti-

tions the rationals into three equivalence classes. Each of

the index 3 groups partition the rationals into two equiv-

alence classes. With “o” representing odd integers and

“e” representing even integers:

ΓT = Γ0(2) = �T, ST 2S� : {q ∈ e} ∪{ q ∈ o}
ΓW = Γ0

(2) = �T 2, STS� : {p ∈ e} ∪{ p ∈ o}
ΓS = Γθ(2) = �T 2, S� : {pq ∈ e} ∪{ pq ∈ o} ,

where we have included synonymous group names fa-

vored by mathematicians.

Each symmetry Γ ⊂ Γ(1) determines a unique pair of

phase diagrams, depending on whether the fixed point

∞ = 1/0 is attractive or repulsive. If Γ acts on the pa-

rameter space of a model, the space of conductivities,

say, then this is the repulsive UV fixed point (∞ = �)

around which a perturbative expansion is usually devel-

oped. But if Γ is acting on the inverse transport tensor

(the resistivity), then it may be an attractive IR fixed

point (∞ = ⊕). Given this one bit of information Γ
determines the topology of the phase diagram. This is

particularly easy to see in the maximally symmetric cases

where Γ = Γi (i = T, W, S). The phase diagram is dic-

tated by which phases and which phase transitions are

possible. If ∞ is an attractive (repulsive) fixed point,

then a transition

f = p/q = ⊕ ← ⊗ → ⊕� = p�/q� = f � > f

exists for:

ΓT iff q and q� are even (odd) and δ = 2(1),

ΓW iff p and p� are odd (even) and δ = 1(2),

ΓS iff pq and p�q� are even (odd) and δ = 1(2),

where δ = det(f �; f) = det(p�, p; q�, q) = p�q − pq�. These

“diagnostic rules” follow immediately from the parity

properties of the group, so the symmetry determines, and

is determined by, the fixed point structure.

The index 3 symmetry groups Γ(2) ⊂ Γi ⊂ Γ(1)

(i = S, T, W ) all have physical potentials, and are there-

fore the focus of our phenomenological analysis. These

potentials belong to a one-parameter family, constructed

next, and we argue that the parameter is real. We shall

see in Sect. 3 that this is supported by almost all available

scaling data from multi-component systems.

A potential family

The three congruence subgroups Γi (i = S, T, W ) at

level two admit physical potentials ϕi, which are essen-

tially ratios of Jacobi θ-functions. They all contain Γ(2)

as their largest sub-group, and since it is our intention to

embed these potentials in a Γ(2)-symmetric family it is

convenient to make the Γ(2)-invariance manifest by ex-

pressing them as rational functions of the fundamental

Γ(2)-symmetric function λ:

ϕT =
λ− 1

λ2
, ϕW = − λ

(1− λ)2
, ϕS = λ(1− λ) .

We consider the general Γ(2)-invariant form for the RG

potential Φ = ψ + ψ obtained by linear superposition of

these maximally symmetric potentials:

ψ(σ) = cT lnϕT + cW lnϕW + cS lnϕS , ci ∈ C.

This family interpolates smoothly between the maxi-

mally symmetric cases, but there are too many param-

eters (6 real) for it too be useful as it stands [43]. We

can ignore an arbitrary normalization factor that only

affects flow rates, leaving 4 real parameters that need to

be constrained by physics and/or mathematics.

Furthermore, since it turns out that all the λi are sim-

ple fractions of polynomials in the Γ(2)-modular function

λ (the square of the so called elliptic modulus k), the

maximally symmetric family of quantum Hall RG poten-

tials reduces to (we choose a convenient parametrization

for a):

Φa ∝ lnλ(λ− 1)
a−1

+ c.c., a ∈ R. (5)

This gives the covariant beta function

βa,σ = −∂σΦa(σ) ∝ aλ− 1

(λ− 1)

λ�

λ
, (6)

which vanishes as it should at the quantum critical points

σ⊗(a) =
1

λ−1(a)
, mod Γ(2). (7)

The Γ(2)-symmetry of the potential Φa is enhanced when

a takes certain values: to ΓW = Γ0
(2) when a = aW =

−1, to ΓT = Γ0(2) when a = aT = 1/2 and to ΓS :=

Γθ(2) when a = aS = 2.

Now we construct a holomorphic potential that

smoothly interpolates between the level subgroups Γ0(2),

Γθ(2), and Γ0
(2) with respect to a parameter a ∈ R

and has these groups as RG symmetries at special values

of a = aS , aT , aW . The idea is essentially the same as

in [52, 53] albeit a weight −2 modular form is used as a

beta function; as discussed in the previous section, this

beta function has poles at the critical conductivities σ⊗.

there are four groups one can define between Γ(1) and Γ(2), so that Γ(2) ⊂ Γ. There is a
subgroup of index 2

Γ2 =

�
γ ∈ Γ(1)

����γ =

�
a b

c d

�
= I, ST, TS mod 2

�
= �ST, TS�. (2.15)

The other subgroups are of index 3 and all conjugate to each other

Γ0(2) = ΓT =

�
γ ∈ Γ(1)

����γ =

�
a b

c d

�
= I, T mod 2

�
= �ST 2S, T �, (2.16)

Γ0(2) = ΓW =

�
γ ∈ Γ(1)

����γ =

�
a b

c d

�
= I, STS mod 2

�
= �STS, T 2�, (2.17)

Γθ(2) = ΓS =

�
γ ∈ Γ(1)

����γ =

�
a b

c d

�
= I, S mod 2

�
= �S, T 2�. (2.18)

The groups are conjugate via Γ0(2) = SΓ0(2)S and Γ0(2) = T−1Γθ(2)T .

modular_fundamental_domain.pdf

Figure 1. The fundamental domain F of Γ(1).

All groups mentioned here have genus 0 modular curves [? ], which in particular means
that there is a meromorphic one-to-one map [? ], λΓ : X(Γ) → CP1 generalizing the j-
invariant for Γ(1). Further, all such functions are rational functions of the λΓ, we denote
the this function field with M0(Γ) = C(λΓ). For the group Γ(2), this invariant function (or
hauptmodul) is, in traditional notation λ := λΓ(2),

λ = λ(σ) =
θ2(σ)4

θ3(σ)4
. (2.19)

We have

λ(0) = 1, λ(1) = ∞, λ(i∞) = 0, and (2.20)

λ�(0) = 0, λ�(1) = ∞, λ�(i∞) = 0. (2.21)
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subgroups at level 2 are

fT (τ) =
∆(2τ)

∆(τ)
, is an invariant of ΓT = Γ0(2), (A13)

fW (τ) =
∆(τ/2)

∆(τ)
, is an invariant of ΓW = Γ0(2), (A14)

fS(τ) =
∆(τ)2

∆(2τ)∆(τ/2)
, is an invariant of ΓS = Γθ(2). (A15)

Also,

fT ∼ λT = λ−2(λ− 1), fS ∼ λS = λ(1− λ), fW ∼ λW = −λ(1− λ)−2. (A16)

Here the Jacobi theta functions (or constants) are

θ1(τ) = 2
∞�

n=0

(−1)nq
1
2 (n+1/2)2 , θ2(τ) =

∞�

n=−∞
q

1
2 (n+1/2)2 , (A17)

θ3(τ) =
∞�

n=−∞
q

1
2n2

, θ4(τ) =
∞�

n=−∞
(−1)nq

1
2n2

. (A18)

θ1(σ) = 2
∞�

n=0

(−1)nq
1
2 (n+1/2)2 , θ2(σ) =

∞�

n=−∞
q

1
2 (n+1/2)2 , (A19)

q = e2πiσ (A20)

θ3(σ) =
∞�

n=−∞
q

1
2n2

, θ4(σ) =
∞�

n=−∞
(−1)nq

1
2n2

. (A21)

These are forms of weight 1/2 that have no zeros in H [? ]. Clearly θi(τ = 0) = ∞ or 1

and θi(τ = i∞) = 0 or 1. θ2(T τ) = eiπ/4θ2(τ), θ3,4(T τ) = θ4,3(τ), and θ3(Sτ) =
√
−iτθ3(τ),

θ2(Sτ) =
√
−iτθ4(τ), and θ4(Sτ) =

√
−iτθ2(τ) . One relation is

θ4
3 = θ4

2 + θ4
4. (A22)

The so called theta doubling identities are

2θ2(2τ)θ3(2τ) = θ2
2(τ) (A23)

2θ2(2τ) = θ2
3(τ)− θ2

4(τ) (A24)

2θ3(2τ) = θ2
3(τ)− θ2

4(τ), and, (A25)

θ2
4(2τ) = θ3(τ)θ4(τ). (A26)
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